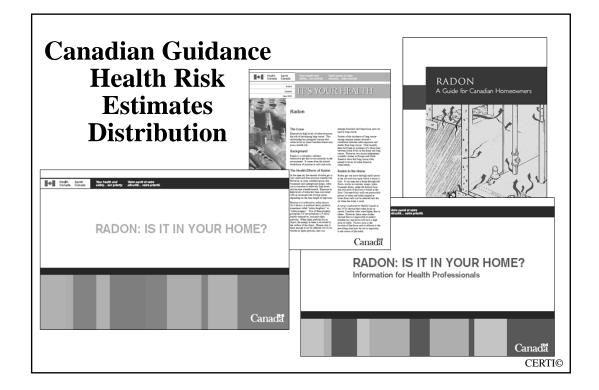


Canadian Radon Program - Measurement

Differences between the Canadian and U.S. Programs

- Consumer Guidance
 - Units of Measure
 - Large Buildings



Center for Environmental Research and Technology, Inc.

© 2013

Mitigation differences addressed in another course

CERTI©

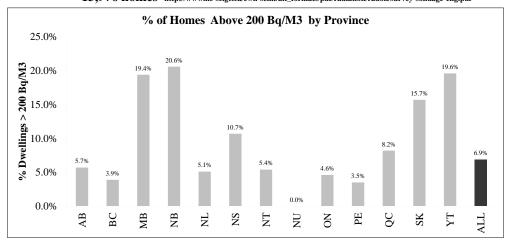
Center for Environmental Research & Technology, Inc. www.certi.us • 719-632-1215
Copyright © CERTI 2013

Canadian Radon Guidance for Dwellings

- Current Guidance: 200 Bq/M3 of Radon
 - Federal Provincial Territorial Radiation Protection
 Committee October 2006
 - Government of Canada June 9, 2007
- Previous Guidance: 800 Bq/M3 of Radon

CERTI©

Canadian Radon Levels


Situation	Current
Average Outdoor Radon Levels	10 Bq/M3
Geometric Mean of Indoor Levels	41.9 Bq/M3
Level to which most homes can be mitigated	75 Bq/M3
% Homes Above 200 Bq/M3 (Population Weighted)	6.9%
	Previously was 3.3%

References

- 1. Radon A Guide for Canadian Homeowners
- 2. Cross-Canada Survey of Radon Concentrations in Homes March 2012 http://www.hc-sc.gc.ca/ewh-semt/alt_formats/pdf/radiation/radon/survey-sondage-eng.pdf

Canadian Incidence by Province

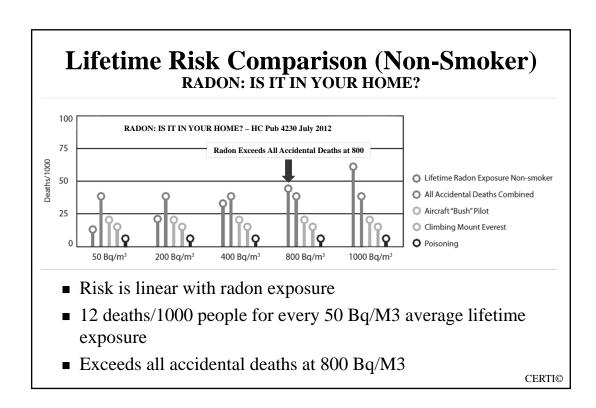
Cross-Canada Survey of Radon Concentrations in Homes March 2012 13,976 homes http://www.hc-sc.gc.ca/ewh-semt/alt_formats/pdf/radiation/radon/survey-sondage-eng.pdf

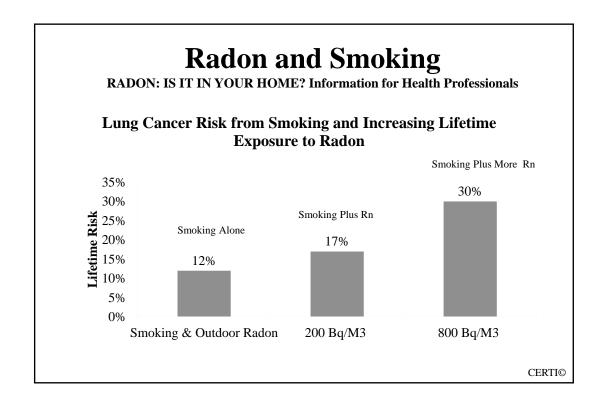
Percentage of Canadian dwellings above 200 Bq/M3: 6.9 %

Average Indoor Exposure: 41.9 Bq/M3

CERTI©

Canadian Health Risk Assumptions

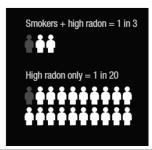

Situation	2006 (Ref 1)	2011 (Ref 2)
Lung Cancer – Men	10,700	11,300
Lung Cancer Women	8,600	9,300
Lung Cancer Total	19,300	20,300
Lung Cancer Attributed to Radon	10%	16%
Attributed to Radon (cases)	1,930	3,261

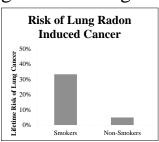

Assumptions:

- Average time spent in home: 18 hours/day (75%)
- Average indoor radon: 41.9 Bq/M3 45 Bq/M3

References

- 1. Radon A Guide for Canadian Homeowners
- Canadian Population Risk of Radon Induced Lung Cancer A Reassessment Based On the Recent Cross Canada Radon Survey





Radon Induced Lung Cancer Smokers vs. Non-Smokers

RADON - ANOTHER REASON TO QUIT

- Lung cancer risk from <u>radon</u> essentially 6 times greater for smokers than non-smokers.
- 16% of lung cancers from radon (previously was 10%)
- Radon is the second leading cause of lung cancer.

CERTI©

Radon Risk Smokers vs. Non-Smokers

Lifetime Risks from Radon Smokers vs. Non-Smokers

LIFETIME RISKS TO A SMOKER EXPOSED TO RADON

Lung cancer risk for lifetime exposure to radon at 800 Bq/m³ 30%
Lung cancer risk for lifetime exposure to radon at 200 Bq/m³ 17%
Lung cancer risk from smoking only 12%

(Source: Report of the Radon Working Group on a New Radon Guideline for Canada)

LIFETIME RISKS TO A NON-SMOKER EXPOSED TO RADON

Lung cancer risk for lifetime exposure to radon at 800 Bq/m 3 5% Lung cancer risk for lifetime exposure to radon at 200 Bq/m 3 2% Lung cancer risk for exposure to radon at low outdoor levels 1%

RADON: IS IT IN YOUR HOME? Information for Health Professionals

Physics and Radon Measurements

Guide for Radon Measurements in Residential Dwellings (Homes)

Canadian Approaches to Radon Measurement

- Differences between Health Canada Guidance and U.S. EPA Protocols
 - Residential
 - Public Buildings
 - Schools
 - Post-Mitigation Testing

There are more similarities than there are differences!

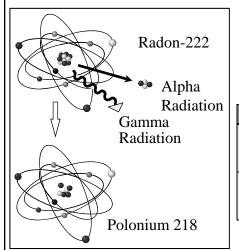
What is Similar?

- Device types
 - Device use and approvals are identical
- Quality Assurance and Quality Control
 - Identical requirements for duplicates, blanks, spikes, performance testing, etc.
 - Both refer to US EPA Document
 - Guidance on Quality Assurance EPA 402-R-95-012 October 1997.
- Common certification oversight
 - National Radon Proficiency Program
- Radon behavior
 - Radon acts the same on either side of the 49th parallel

CERTI©

What are Basic Differences?

- Measurement Units
 - SI units
- Canadian preference for Long-Term measurements
 - US also prefers long-term measurements as better indicator but emphasizes short-term as first step in identifying problem
 - Canada recommends long-term (3 month minimum as first step)
- Canada requires knowledge of public building protocols
 - Public buildings considered to be "dwellings"
- Real Estate Testing
 - Need for short-term testing recognized, but long-term is still recommended.


Applicable SI Units

SI: systeme internationale

- Radioactivity
- Exposure
- Dose
- Pressure Measurements

CERTI©

Radioactivity

Rate that a radioactive element decays or disintegrates down to another element.

Туре	Unit	Rate/Second	Rate/Minute
U.S.	Pico Curie	.037 decays	2.22 decays
	(pCi)	per second	per minute
SI/Canada	Becquerel	1 decay per	60 decays
	(Bq)	second	per minute

A source at 1 Bq is 27 times stronger than one at 1 pCi (1/0.037 = 27)

Radioactivity per Unit Volume

- U.S.
 - Liter
- Canada
 - Cubic Meter

Туре	Unit	Rate/Minute per Unit Volume
U.S.	Pico Curie/Liter (pCi/L)	2.22 decays per minute per liter
SI/Canada	Becquerel per cubic meter (Bq/M3)	60 decays per minute per cubic meter

1 pCi/L =
$$\frac{2.22 DPM}{L} \times \frac{1,000 L}{1M^3} \times \frac{Bq}{60 DPM} = 37 Bq/M^3$$

$$1 \text{ Bq/M}^3 = \frac{60 \text{ DPM}}{M^3} \times \frac{1 \text{ M}^3}{1000 \text{ L}} \times \frac{pCi}{2.22 \text{ DPM}} = 0.027 \text{ pCi/L}$$

CERTI©

Converting Between Bq/M3 & pCi/L

$$\frac{Bq/M^3}{37} = pCi/L$$

Tips:

- Remember 37
- To convert --- either multiply or divide by 37
- If sampling same location -- Bq/M3 will always be numerically larger than pCi/L
 - Divide by 37 when converting Bq/M3 to pCi/L
 - Multiply by 37 when converting pCi/L to Bq/M3

Conversion Examples: Bq/M3 to pCi/L

$$\frac{Bq/M^3}{37} = pCi/L$$

■ What is the Canadian radon guidance in pCi/L?

$$\frac{200 Bq/M^3}{37} = 5.4 \text{ pCi/L}$$

■ What is World Health Organization's Reference Level of 100 Bq/M3 in terms of pCi/L?

$$\frac{100 Bq/M^3}{37} = 2.7 \text{ pCi/L}$$

CERTI©

Conversion Examples: pCi/L to Bq/M3

$$pCi/L \times 37 = Bq/M^3$$

■ What is the U.S. radon guidance in Bq/M3?

$$4.0 \text{ pCi/L} \times 37 = 148 \text{ Bq/M}^3$$

■ What is U.S. EPA's suggestion to which homes can be reduced when mitigated in Bq/M3?

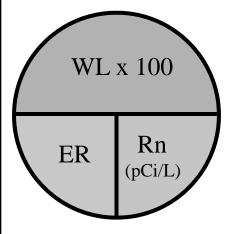
$$2.0 \text{ pCi/L x } 37 = 74 \text{ Bq/M}^3$$

Radon Decay Product Units

- Working Levels (WL) are used in Canadian occupational guidance documents
- SI Units:
 - Micro joules/cubic meter abbreviated: μJ/M³
 - Measure of energy per unit volume (cubic meter)

 $_$ WL x 20.8 = $_$ micro joules per cubic meter

Example: $0.020 \text{ WL x } 20.8 = 0.416 \,\mu\text{J/M}^3$


This can also be expressed in milli joules (factor of 1,000) or 416 mJ/M³

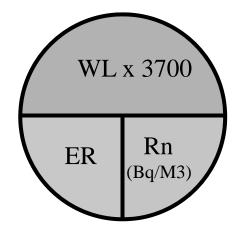
CERTI©

Equilibrium Equation (English)

A Means for Estimating RDP Levels from Radon Measurements

Where Radon is Measured in pCi/L

■ ER =
$$\frac{\text{WL x } 100}{\text{Rn}}$$


$$\blacksquare Rn = \frac{WL \times 100}{ER}$$

■ WL =
$$\frac{\text{ER x Rn}}{100}$$

Equilibrium Equation (SI)

A Means for Estimating RDP Levels from Radon Measurements

Where Radon is Measured in Bq/M3

$$\blacksquare ER = \frac{WL \times 3700}{Rn}$$

$$\blacksquare Rn = \frac{WL \times 3700}{ER}$$

■ WL =
$$\frac{\text{ER x Rn}}{3700}$$

$$\frac{Bq/M^3}{37} = pCi/L$$

CERTI©

Equilibrium Equation Example 1 Calculate RDPs

If EF = 40% and radon is 800 Bq/M3, what is Radon Decay Product activity in units of WL?

$$WL = \frac{ER \times Rn}{3700} = \frac{0.4 \times 800}{3700} = 0.086 \text{ WL}$$

Equilibrium Equation Example 2 Calculate Equilibrium Factor

If Rn = 250 Bq/M3 and RDPs = .042 WL what is EF?

$$ER = \frac{WL \times 3700}{Rn} = \frac{0.042 \times 3700}{250} = 0.62 \text{ or } 62\%$$

Note: Percentage of decay products in air is referred to as equilibrium factor (EF) or Equilibrium Ratio (ER)

CERTI©

Equilibrium Equation Example 3 Calculate Radon

How much radon is needed to create 0.020 WL in a room assumed to have an equilibrium factor of 40% EF?

$$Rn = \frac{WL \times 3700}{ER} = \frac{0.020 \times 3700}{0.4} = 185 \text{ Bq/M3}$$

Note: Canada (and others) assume an EF of 40% (0.4)

Dose – WLM and milli Sieverts

- Working Level Month is a combination of exposure and time of exposure:
 - WLM = $\frac{WL \ x \ hours}{170 \ hours/year}$
 - Conversion Factors:

Situation*	Conversion
Workplace	WLM x 5 = mSv
Public	WLM x 4 = mSv

- * Canadian Centre for Occupational Health and Safety http://www.ccohs.ca/oshanswers/phys_agents/ionizing.html
- * ICRP Publication 65, Protection Against Radon at Home and at Work

CERTI©

Dose Example (1)

What is dose in mSv for working a full year (2,000 hours) at average radon level of 150 Bq/M3?

- 1. Convert Bq/M3 to pCi/L: 150 Bq/M3 / 37 = 4.05 pCi/L
- 2. Estimate RDP in WL using Canadian EF assumption (40%)

$$WL = RN \times EF/100 = 4.05 \times .4/100 = .016 WL$$

3. Determine Dose in WLM

$$WLM = WL \times hours/170 = .016 \times 2000/170 = 0.188 WLM$$

4. Apply appropriate conversion factor

0.188 WLM x 5 mSv/WLM = 0.94 mSv (Essentially 1mSv)

Another Way for Calculating Dose*

$$300,000 \text{ Bq/M3} - \text{hours} = 1 \text{ mSv*}$$
or
$$300 \text{ kBq/M3} - \text{hours} = 1 \text{ mSv}$$

Assumes 40% Equilibrium Factor

- 1. Multiply radon in Bq/M3 x hours worked
- 2. Divide by 300,000 to obtain mSv
- * Reducing Radon Levels in Existing Homes A Canadian Guide for Professional Contractors

CERTI©

Dose Example (2)

What is dose in mSv for working 4 weeks at average radon level of 450 Bq/M3?

- 1. Calculate hours during period
 - $4 \text{ (weeks) } \times 40 \text{ (work hours per week)} = 160 \text{ hours}$
- 2. Calculate k Bq/M3 hours

$$450 \text{ Bq/M3} \times 160 \text{ hours} = 72000 \text{ Bq/M3 hours}/1000$$

= 72 kBq/M3 hours

3. Determine Dose in mSv
$$\frac{72 \frac{kBq}{M3} hours}{300 \frac{kBq}{M3} hours per mSv} = 0.24 \text{ mSv}$$

What is Significance of Annual Dose to a Radon Professional?*

According to the Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials there are specific exposure brackets where specific Management Plans are to be in place:

Annual Effective Dose mSv	Equivalent Annual Radon Exposure kBq/M3 – hours	Average Radon for 2,000 hours per year & 40% EF Bq/M3	Action
Less than 1	Less than 300	Less than 150	No action
1 to 5	300 - 1500	150 - 750	Dose Management Program
5-20	1500 - 6000	750 - 3000	Radiation Protection Program
20 and above	6000	3000	Dose Limit

^{*}Reducing Radon Levels in Existing Homes A Canadian Guide for Professional Contractors

CERTI©

Measurement Protocol Differences

Device characteristics are identical to materials covered in CERTI course (U.S. Device Protocols)

Residential Deployment Locations

- Residential dwellings:
 - Single family residences
 - Apartment units
 - ☞ Locations below 3rd floor
- One device per dwelling (plus QA/QC)
 - Normal occupancy area in lowest level of home
 - Where one would spend 4 hours or more per day
- No stipulation for duplicate, passive, short-term integrating devices in real estate transactions

CERTI©

Test Device Placement

Distance from:	Metric	English
Floor	0.8 to 2 meters above floor	3 To 6.5 feet above floor
Ceiling	At least 50 cm from ceiling	At least 20 inches from ceiling
Interior wall	At least 40 cm from interior wall	At least 16 inches from interior wall
Exterior wall	At least 50 cm from exterior wall	At least 20 inches from exterior wall
Other objects*	At least 20 cm from other objects	At least 8 inches from other objects

^{*} Objects that might interfere with normal air movement to device like behind a bookcase

Avoid	Avoid
High humidity areas	Kitchen, laundry room, bathrooms
Non occupied areas	Closets cupboards, sumps, crawlspaces, foundation nooks
Air currents and Heat	 Path of forced air from HVAC system Over radiators Near fireplaces In direct sunlight

Residential Building Conditions Long-Term Tests

- No special building operating conditions
- Test Duration:

Minimum: 3 months* Optimum: 12 months

- Testing Period:
 - Ideal: October to April but not mandatory

*1 month tests are listed in Canadian Guidance but strongly discouraged

CERTI©

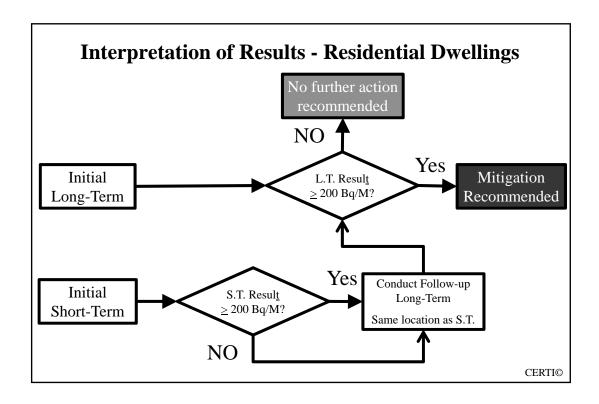
Residential Building Conditions Short-Term Test

Item	Status during S.T. Test	Comment
Exterior windows*	Closed	
Exterior doors*	Closed except for normal entry and exit	Do not leave open for more than a few minutes
Heat Recovery Ventilators	Operate as normal	Probably should note on report
Air Conditioning	OK if recirculates interior air only	Window units- turn to total recycle
Attic Fans	Operate as normal	
Radon mitigation system	Operate as normal	Probably should note on report
Whole house fans	OFF	Not stipulated in guidance
Exhaust fans	Operate as normal	Do not run continuously

^{*} If test is less than 4 days, doors and windows should be closed 12 hours prior as well as all during test

Long-Term Devices Listed

Long-Term Devices	Duration
Alpha Track Detectors	1 to 12 months
Electret Ion Chamber	1 to 12 months
Digital Detector*	Running average


^{*}Not an officially approved device by NRPP as of 2/1/2013

- Canadian program emphasizes use of long-term test devices to characterize indoor radon levels
- Although 1 month test is allowed -- 3 month minimum is strongly suggested

CERTI©

Short-Term Devices Listed

Short-Term Devices	Duration
Short-Term Devices	Duration
Activated Charcoal	2 to 7 days
Charcoal Liquid Scintillation	2 to 7 days
Electret Ion Chamber	2 to 7 days
Continuous Radon Monitor	Normally 48 hours (Can be longer)
Continuous Working Level Monitor (RDPs)	Minimum 48 hours (Can be longer)
Radon Progeny Integrating Sampling Unit	Normally 48 hours (Can be longer)
Three Day Integrating Evacuated Scintillation Cell	Three days
Grab Radon / Activated Carbon	Typically 5 minute diagnostic samples
Grab Radon / Scintillation Cell	Typically 5 minute diagnostic samples
Grab Radon / Pump Collapsible Bag	Typically 5 minute diagnostic samples
Grab Working Level (RDPs)	Typically 5 minute diagnostic samples

Use of Short-Term Test Results

- Regardless of ST test result, it should be followed up with a long-term test.
- A <u>single</u> short-term test is not sufficient for making a mitigation decision.
- Test duration less than 2 days is never acceptable to determine radon concentrations.

Remediation Time Frame

Radon Concentration Bq/M3 (Assumed from Long-Term Test)	Recommended Remedial Action Time
Greater than 600 Bq/M3	Less than 1 year
Between 200 - 600 Bq/M3	In less than 2 years
Less than 200	No action required

CERTI©

Post-Mitigation Testing

Event	Type of Test	Timing	Comment
Immediately After mitigation	Short-Term		 After system has operated 24 hours Same location as pre-mitigation test Effective: If result less than 100 Bq/M3 Ineffective if result greater than 200 Bq/M3
1st Follow-up	Long-Term	In winter after ST test	Assumed to be within 12 months after mitigation
2 nd Follow-up	Long-Term	Within 2 years after mitigation	
Subsequent follow-ups	Long-Term	Every 5 years after mitigation	

■ T ■ Cana

Your health and safety... our priority Votre santé et votre sécurité ... notre priorité

Public Buildings

- Indoor areas for public considered to be dwellings
 - Long-term care residences
 - Hospitals
 - Schools
 - Detention Centres

Guide for Radon Measurements in Public Buildings

(Schools, Hospitals, Care Facilities, Detention Centres)

Canada

Public Building Guidance

■ Public : <u>200 Bq/M3</u>

Workers: <u>Not covered in Public</u><u>Building Document</u>

• <u>Canadian Guidelines for Management</u> <u>of Naturally Occurring Radioactive</u> <u>Materials (NORM)</u>

• Canadian Labour Code

Hoalth Santi Canada Canada

> Canadian Guidelines for the Management of Naturally Occurring Radioactive Materials (NORM)

http://hc-sc.gc.ca/ewh-semt/pubs/conta minants/norm-mrn/index-eng.php Canada

Long-Term Testing of Federal Buildings

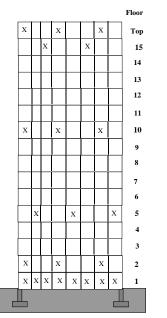
Following is a breakdown of the Federal Building radon test results as of December 2011.

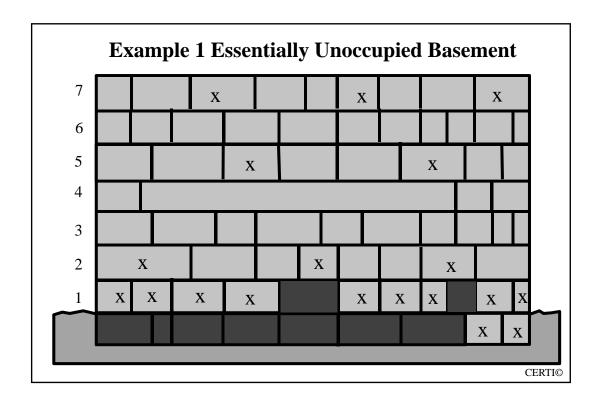
Total number of Buildings	
Number of Buildings with average Radon below 200 Bq/m ³	
Number of Buildings with average Radon between 200 and 600 Bq/m ³	
Number of Buildings with average Radon above 600 Bq/m ³	

CERTI©

Public Buildings vs. Schools

- Public Buildings
 - Assumed to be occupied 100% of time
 - Test duration: 3-12 months
- Schools
 - Assumed to be occupied:
 - ₹ 5 days per week
 - ☞ 10 months/ year
 - Special calculation is used to estimate student exposure
 - Long-term weighted by CRM results (later)

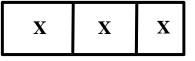

Test Locations Public Buildings and Schools


- 1. Test all rooms with floors or walls that are in direct contact with the ground or a crawl space.
 - If none of these levels have occupied rooms, test all occupied rooms on the first occupied level.
- 2. Test every 3rd room on the floor level above the floor meeting criterion #1.
- 3. Test every 3rd room on the top floor of the building.
- 4. Test every 3rd room of every 5th floor (e.g. Floor 5, 10, 15, 20, 25,...).

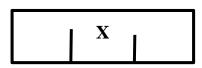
CERTI©

Public Building Measurement Locations

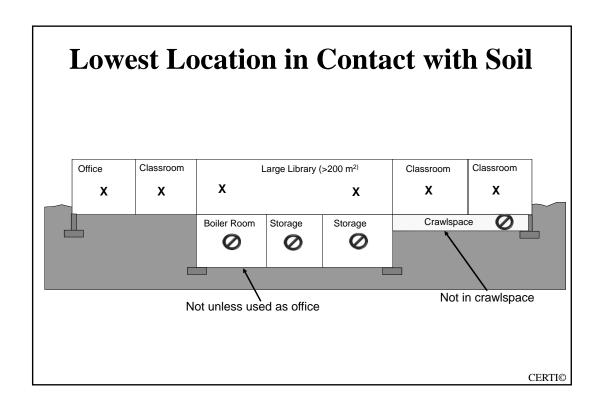
- Test
 - All ground contact rooms occupied more than 4 hours per day
 - 1 out of 3 occupied rooms on:
 - Floor above lowest occupied level
 - ▼ Top floor of building
 - Fivery 5th floor
- Do not test
 - Storage areas, closets, warehouse space, kitchens
 - Rooms occupied < 4 hours/day



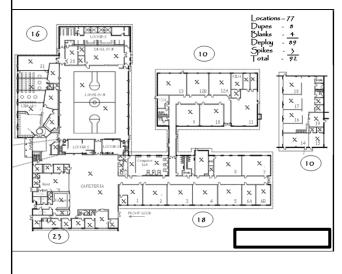
Public Buildings – Measurement Locations


- Test all ground floor occupied rooms
- Room Definition:
 - Occupied 4 hours or more per day
 - Has floor to ceiling walls
 - Partitions do not constitute a room

■ Large rooms 1 device per 200 square meters



Floor to ceiling walls: 3 locations


Partial dividers: 1 location

Center for Environmental Research & Technology, Inc. www.certi.us • 719-632-1215
Copyright © CERTI 2013

Single Story School Example

- Every occupied room
- 1 per 200 m²
- 10% Duplicates
- Additional QA/QC:
 - 5% Blanks
 - 3% Spikes

CERTI©

Examples of Rooms Not to Test

- Rooms not occupied more than 4 hours per day
- Locker rooms
- Hallways if not occupied more than 4 hours per day
- Storage areas
 - Consider testing if they could be occupied in future
- Bathrooms
- Crawlspaces
- Utility tunnels
- Boiler rooms unless occupied as office
- Rooms where wall does not extend to ceiling

Deployment Considerations-Public Buildings

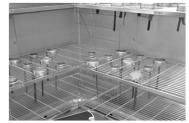
- Deploy devices identically to placement in residences
- If several buildings in a complex, test each separately
- Additional recommendations Public Buildings
 - Avoid high heat zones such as over radiators
 - Out of direct path of air supply ducts
 - Avoid being close to electrically powered equipment

 - **Televisions**
 - Stereos and speakers

CERTI©

QA/QC Duplicates Public Buildings & Schools

- Duplicates in 10% of locations
 - Required if more than 10 locations to be tested
 - Recommendation: Always at least one
 - Distribute systematically throughout
- Locate 10 cm (4 inches apart)

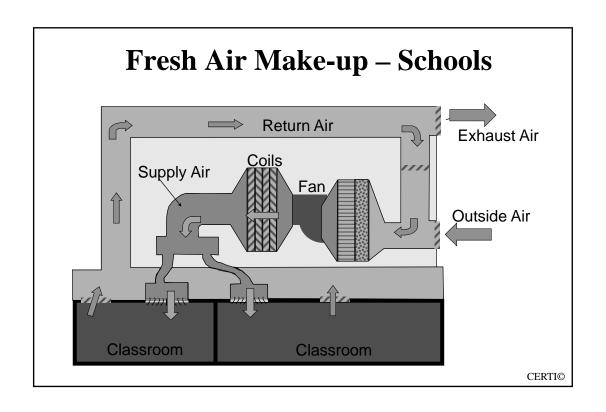

Duplicate devices

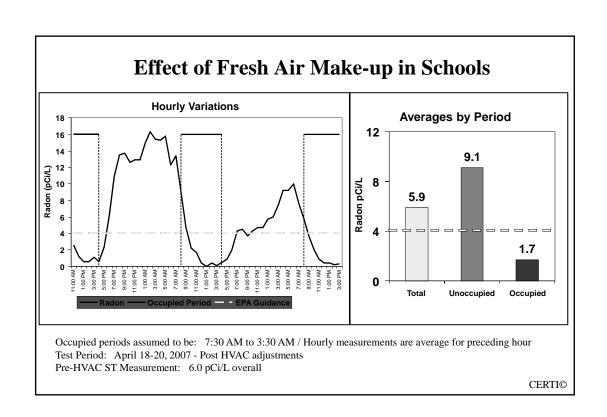
If one result is more than twice the other:

- Report to supplier/laboratory
- Room or area tested may need to be re-tested

Additional QA/QC Measures to Consider

Field Blank


Spikes


- Blanks 5% (Should be at LLD of device typically less than 1.0)
 - Unexposed device sent in for analysis
- Spikes 3% (Should be at least within 25% of chamber value)
 - Sent to radon chamber for exposure to known environment

CERTI©

Follow-Up & Interpretation of Measurements

Facility Type	Follow-Up
Public Building other than School	No follow-up required Assumes minimum 3 month test was conducted If long-term result is greater than 200 Bq/M3 proceed to mitigation
School	Follow-up with hourly measurements during school week Estimate exposure during occupied periods

Follow up to Long-Term Results - Schools

- Conduct a short-term measurement in locations with elevated long-term results.
 - Use Continuous Monitor that measures in hourly increments
 - Test period
 - # 48 hour to 7 days (7 days preferred)
 - During occupied week
- Segregate hourly measurements for occupied hours and determine average radon for occupied periods
- Obtain ratio of occupied average to total short-term result
 - Multiply ratio times previous long-tem result to obtain assumed occupied exposure
 - Make recommendation on assumed occupied exposure

CERTI©

Follow-up to L.T. – Schools – Example 1

$$Rn_{(long\text{-term average during school hours)} = \frac{\textit{S.T.Occupied Average}}{\textit{S.T.Average}} \times LT \; Result$$

An initial long-term result in a classroom was 300 Bq/M3. A CRM was deployed for 7 days and an hourly average was obtained for occupied periods as follows:

Data from7 day Follow-up S.T. Test	Result
Monday – Friday Average (8:00 AM to 3:00 PM	122 Bq/M3
Total Average for 7 day S.T. Test	560 Bq/M3

RN L.T. Occupied =
$$\frac{122}{560}$$
 x 300 Bq/M3 = 65 Bq/M3

Follow-up to L.T. – Schools – Example 2

$$Rn_{(long\text{-term average during school hours)} = \frac{\textit{S.T.Occupied Average}}{\textit{S.T.Average}} \times LT \; Result$$

An initial long-term result in a classroom was 220 Bq/M3. A CRM was deployed for 48 hours and an hourly average was obtained for occupied periods as follows:

Data from7 day Follow-up S.T. Test	Result
Tuesday – Wednesday Average (8:00 AM to 3:00 PM	430 Bq/M3
Total Average for 2 day S.T. Test	310 Bq/M3

RN L.T. Occupied =
$$\frac{430}{310}$$
 x 220 Bq/M3 = 305 Bq/M3

Its larger - how can this be?

CERTI©

Cautions on Continuous S.T. Measurements as Follow-up

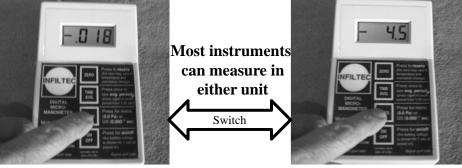
- Select a time when economizers are not operating
 - 100% fresh air for A/C can give false low ratio
- The longer the deployment period the better
 - The shorter the test, the greater weather and building use variations can have on obtained ratio
- Utilize normal CRM precautions
 - Eliminate first four hours of data from averages
 - Recognize that passive CRM hourly averages lag real time exposures by ~ 1 hour
- Every school can have different pupil occupied time periods
- Look for unusual changes in hourly measurements

Remediation Time Frame – Public Buildings

Same Guidance as for Residences

Radon Concentration Bq/M3 (Assumed from Long-Term Test)	Recommended Remedial Action Time	
Greater than 600 Bq/M3	Less than 1 year	
Between 200 – 600 Bq/M3	In less than 2 years	
Less than 200	No action required	

CERTI©


Pressure Differential Units

Differential Pressure Measurements

English Units (U.S.)

SI Units (Canada)
Pascals

Inches of Water Column

1 pascal = 0.004 inches of water column A thousandth of an inch is $\frac{1}{4}$ of a pascal

CERTI©

Additional Resources and Updates

Organization	URL
Health Canada	http://hc-sc.gc.ca/index-eng.php
Center for Environmental Research and Technology, Inc.	www.certi.us
Canadian National Radon Proficiency Program	http://nrpp.info/cnrpp.shtml

If you are viewing this program as part of a CERTI course be sure to check out the resource section for additional tools and resources

Center for Environmental Research and Technology, Inc.

© 2013